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Abstract: A highly diastereoselective synthesis of chiral ring-fused isoindolinone products, the
skeleton of which is common to many naturally occurring and biologically active compounds, is
achieved in only two synthetic steps from readily available precursors viga an N-acyliminium ion
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The synthetic potential of N-acyliminium species is now well documented. Such compounds exhibit a broad
versatility resulting in a range of synthetic appiications.i There has been much recent interest in the synthesis
of ring-fused heterocyclic systems via N-acyliminium ion cyclization as the key ring-forming step.2 Several
research groups have reported the synthesis of chiral ring-fused isoindolinone targets via N-acyliminium ion
cyclization without addressing the question of stereocontrol during the reaction.?2 The isoindolinone ring
system is interesting due to the actual and potential biological activities of many derivatives. 3 In addition,
several naturally occurring chiral alkaloids contain a ring-fused isoindolinone moiety, including neuvamine

14 and lennoxamine 2.4b, 5
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Herein we report a facile new procedure which allows the synthesis of chiral ring-fused isoindolinone
products in only two synthetic steps with extremely high levels of diastereoselectivity, from readily available
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non-racemic ring-fused isoindolinones through Lewis acid mediated formation of an N-acyliminium
intermediate followed by intramolecular nucleophilic addition of a proximate, electron-rich aromatic

substituent.
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The diastereoisomericaily pure N-acyliminium ion precursor 3 required for the initial study was prepared
directly from the corresponding enantiomerically pure amino alcohol substrate, (S)-phenylalaninol, in 87%
isolated yield by our usual method.6 The relative trans-stereoéhcmistry of the tricyclic lactam products has
been verified by single crystal X-ray analysis.6

Substrate 3 was expected to undergo N-acyliminium ion formation on treatment with a Lewis acid
activator (1.5 equivalents, -10°C, CH2Cly), allowing cyclization of the aromatic substituent to form the
desired tetracyclic isoindolinone target as a mixture of two possible diastereoisomers, 4a and 4h, as
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highlighted in Scheme 1.
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3 Scheme 1. 4a 4b

This was indeed found to be the case and, as can be appreciated from Table 1, an extremely high degree of
diastereoselectivity can be achieved in this reaction, particularly on using trimethylsilyl triflate as the Lewis
acid activator (Table 1, entry ¢,4a : 4b =249 : 1).

Table 1, N-Acyliminium Cyclization Reaction of Tricyclic Lactam, 3
Entry Activator ield, 4 (%) 4a:4b
a SnCly 98 2:1
b TiCly 93 2:1
c BF;.QEt; 99 3:1
d H7S04 80 6:1
€ TMSOTE 97 249 : 1

#getermined by 270 MHz 1H NMR spectroscopy

In all cases the cyclization reaction proceeded cleanly and in excellent yield. The major diastereoisomer was

he relative ste; reochemistry of
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isolated by fractional crystallisation from dichloromethane and hexanes
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epimerisation of 4b to 4a (or vzce-versa) was observed on treating the reaction mixtures with a Lewis acid
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(TMSOTTY) in dichioromethane at room temperature over 24 hours.

Figure 1.
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We have rationalised the stereochemical outcome of the reaction by invoking the transition state models
highlighted in Scheme 2. We believe that stereocontrol in the intramolecular cyclization reaction results not
from a chelation control mechanism, as previously suggested by others to explain diastereoselective
nucleophilic addition to similar N-acyliminium ion species,3 but from acyclic stereocontrol resulting from a
1,3-interaction between the amide carbonyl group and the substituent at the chiral centre of the amino
alcohol component.?

In transition state A (Scheme 2), leading t

carbonyl group and the more bulky Lewis acid-complexed oxymethyl group exists. This conformation may
initially appear to be more favourable due to the possibility of chelation of both the amide oxygen atom and
the alkoxy- group with a metal counter-ion; such an interaction would lead to formation of a 7-membered
chelate. However, from consideration of the results shown in Table 1, it is clear that if chelation is taking
place it is resulting in a lower level of diastereoselection: the Lewis acids used in our study that are capable
of multi-point co-ordination actually lead to lower levels of product diastereoselectivity (Table 1, entries a-
¢); probably due to an increased contribution of a chelated transition state similar in structure to B.
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Scheme 2. Transition State Models for Diastereoselective N-Acyliminium Ion Cyclization of 3
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We were pleased to find that the above protocol could be applied to other, more substituted, substrate
systems. The corresponding tricyclic lactams § (98% yield) and 6 (93% yield) were prepared by our usual
method,® as single diastereoisomers, from 1S,2R-2-amino-1,2-diphenylethanol and 1S,2R-norephedrine
respectively. Results for the cyclization reaction (Scheme 3) are presented in Table 2.
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Scheme 3

Substrate 5 proved to be less reactive than 3 and 6, proceeding only under the influence of TiCly to yield the
desired tetracyclic product in excellent weld Substrate 6 underwent cyclization with TMS-triflate as the
in almost quantitative yield. The relative stereochemistry of the major product



iastereoisomer was confirmed in both cases bv single crystal X-rav analvsis. Again, excellent levels of
diastereoisomer was co med 1n both y single crystal A-ray analysis. Again, excellent levels of
" nint diactarancalantivity wara nhecaroad fAar tha runlisafian raantinne
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stereoconirol resulting from a 1,3-interaction beiween the amide carbonyl group and the substituent at the

chiral centre of the amino alcohol component and not via chelation control, since with substrates 5 and 6 the
alcohol functionality would be more remotely oriented in the transition state and therefore unavailable for
co-ordination to the amide carbonyl group. Transition state model A, proposed in Scheme 2, can be applied
successfully to rationalise the stereochemical outcome of the cyclization reaction of substrates 5 and 6.

In summary, we have identified a novel and highly stereoselective route to the ring-fused chiral
isoindolinone ring system, the skeleton of which is common to many naturally nccumng and blnlmncallv
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active compounds. In only two synthetic steps we have prepared the ring-fused heterocyclic system with
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prepared by this protocol. Our results will be reported in due course.
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